Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tao Li,^{a,b} Zhi-Hua LI^b and Shao-Wu Du^b*

^aGraduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China, and ^bThe State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: swdu@fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.042 wR factor = 0.109 Data-to-parameter ratio = 21.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $[Cd(C_2H_6O_2PS_2)_2(C_{10}H_8N_2)]_n$, contains zigzag chains linked through the 4,4'-bipyridine groups. The Cd atom exhibits a slightly distorted octahedral coordination environment, consisting of four S atoms of the chelating dimethyl dithiophosphate ligands and two N atoms of the centrosymmetric bridging 4,4'-bipyridine ligand.

catena-Poly[[bis(O,O'-dimethyl dithiophosphato-

 $\kappa^2 S, S'$)cadmium(II)]- μ -4,4'-bipyridine-N:N']

Received 25 November 2004 Accepted 2 December 2004 Online 11 December 2004

Comment

The organodithio-derivatives of phosphorus are of interest because of their versatile coordination modes towards metals (Ito, 1972; Shety & Quintus, 1970; McCleverty *et al.*, 1982; Zheng *et al.*, 1999), and studies related to metal phosphorodithioates as lubrication oil and in the plastics industry (So *et al.*, 1993; Mikhailov *et al.*, 1970; Lawton *et al.*, 1972) have demonstrated extensive commercial applications. We have used 4,4'-bipyridine in this study because amines in lubrication oil have a great influence on its properties (Shiomi *et al.*, 1989). We report here the synthesis and crystal structure of a new compound, $[Cd(dtp)_2(bpy)]_n$ (dtp is dimethyl dithiophosphate and bpy is 4,4'-bipyridine), (I).

The title compound consists of alternating Cd(dtp)₂ and bpy units. A crystallographic center of inversion is present at the mid-point of the C–C bond of the bpy ligand; thus the pyridine rings in the bpy ligands are coplanar. A couple of dtp ligands are coordinated to the Cd atom by their two S atoms (Fig. 1). The average Cd–N bond length [2.378 (3) Å] is in good agreement with that for $[{Cd(SC{O}Ph)_2}_2(\mu-bpy)_n]$ [2.333 (2) Å; Vittal*et al.*, 2003], while the the average Cd–Sbond length <math>[2.701 (1) Å] is consistent with those for other sixcoordinate Cd complexes (Shimoi *et al.*, 1982; McCleverty *et al.*,1982). The S–P distances [1.965 (2)–1.986 (2) Å] are close to the typical double S=P bond length (1.94 Å). The S1– Cd1–S2 and S3–Cd1–S4 angles $[76.37 (5) \text{ and } 75.93 (4)^{\circ}]$

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

Section of the crystal structure of the title compound. Displacement ellipsoids are plotted at the 30% probability level. Hydrogen atoms are omitted for clarity. Atoms labeled with the suffix A are at (-1 - x, 1 - y, 1 - z).

are comparable with the value in the complex $[Cd(S_2P^iBu_2)_2]_2$ [78.82 (6)°; Byrom *et al.*, 2000]. Thus, the Cd atom exists in a slightly distorted octahedral configuration. The bpy ring and the metal lie almost in the same plane; the mean deviations of N1 and N2 from the mean plane are 0.0047 and 0.0338 Å, respectively. The four-membered ring formed by atoms Cd1, S1, S2 and P1 is also planar, as is the Cd1/S3/S4/P2 ring. These two planes make a dihedral angle of 84.4°. A perspective view of the polymer packing is presented in Fig. 2.

Experimental

 $Cd(dtp)_2$ (0.227 g, 0.5 mmol) and bpy (0.078 g, 0.5 mmol) were dissolved in CH_2Cl_2 (10 ml). The mixture was stirred for 15 min and filtered. The filtrate was added to CH_3CN (10 ml) and left in air at room temperature. After a few days, colorless block-shaped crystals of (I) were obtained in 58% yield.

Crystal data

 $R[F^2 > 2\sigma(F^2)] = 0.042$

H-atom parameters constrained

 $wR(F^2) = 0.109$

5256 reflections

244 parameters

S = 1.06

$\begin{bmatrix} Cd(C_2H_6O_2PS_2)_2(C_{10}H_8N_2) \end{bmatrix}$ $M_r = 582.90$ Triclinic, $P\overline{1}$ a = 10.281 (3) Å b = 10.672 (4) Å c = 12.945 (5) Å $\alpha = 79.209$ (15)° $\beta = 67.071$ (12)° $\gamma = 63.502$ (13)°	Z = 2 D _x = 1.654 Mg m ⁻³ Mo Kα radiation Cell parameters from 3009 reflections $\theta = 3.4-27.5^{\circ}$ $\mu = 1.45 \text{ mm}^{-1}$ T = 293 (2) K Prism colorless
$V = 05.562 (15)^{\circ}$ $V = 1170.5 (7) Å^{3}$	$0.30 \times 0.25 \times 0.20$ mm
<i>Data collection</i> Rigaku Mercury 70 diffractometer	4625 reflections with $I > 2\sigma(I)$
ωscan	$R_{\rm int} = 0.016$
Absorption correction: multi-scan, (CrystalClear: Rigaku, 2000)	$\theta_{\text{max}} = 27.5^{\circ}$ $h = -13 \rightarrow 12$
$T_{\min} = 0.654, T_{\max} = 0.744$	$k = -12 \rightarrow 13$
8921 measured reflections	$l = -16 \rightarrow 16$
5256 independent reflections	
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0547P)^2$

Figure 2 Packing diagram of (I).

Table 1

Selected geometric parameters (Å, °).

Cd1-N1	2.377 (3)	Cd1-S4	2.691 (1)
Cd1-N2	2.378 (3)	P1-S1	1.984 (2)
Cd1-S1	2.696 (1)	P1-S2	1.965 (2)
Cd1-S2	2.706 (1)	P2-S3	1.986 (2)
Cd1-S3	2.711 (1)	P2-S4	1.967 (2)
N1-Cd1-N2	83.13 (14)	S1-P1-S2	115.51 (7)
S1-Cd1-S2	76.37 (5)	S3-P2-S4	114.43 (6)
S3-Cd1-S4	75.93 (4)		

All H atoms were placed at calculated positions (C-H = 0.93 and 0.96 Å), riding on their parent atoms $[U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)]$.

Data collection: *CrystalClear* (Rigaku, 2000); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

This work was supported by grants from the State Key Laboratory of Structural Chemistry [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS)], the Ministry of Science and Technology of China (001CB108906), and the National Science Foundation of China (20333070).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Byrom, C., Malik, M. A., O'Brien, P., White, A. J. P. & Williams, D. J. (2000). *Polyhedron*, **19**, 211–215.

Ito, T. (1972). Acta Cryst. B28, 1034–1040.

- Lawton, S. L., Rohrbaugh, W. J & Kokotailo, G. T. (1972). *Inorg. Chem.* 11, 612–618.
- McCleverty, J. A., Gill, S., Kowalski, R. S. Z., Bailey, N. A., Adams, H., Lumbard, K. W & Murphy, M. A. (1982). J. Chem. Soc. Dalton. Trans. pp. 493–503.
- Mikhailov, V. V., Kokhanov, Y. V., Kazaryan, K., Matreeva, E. N. & Kozodoi, A. (1970). *Plast. Massy.* 9, 23–24.
- Rigaku (2000). CrystalClear. Version 1.3.6. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shety, P. S. & Quintus, F. (1970). J. Am. Chem. Soc. 92, 3964-3969.
- Shimoi, M., Ouchi, A., Aikawa, M., Sato, S. & Saito, Y. (1982). Bull. Chem. Soc. Jpn, 55, 2089–2093.
- Shiomi, M., Tokashiki, M., Tomizaawa, H. & Kuribayashi, T. (1989). Lubr. Sci. 1, 134–137.
- So, H., Lin, Y. C., Huang, G. S. & Chang, S. T. (1993). Wear, **166**, 17–26. Vittal, J. J., Sampanthar, J. T. & Lu, Z. (2003). *Inorg. Chim. Acta*, **343**,
- 224–230.
- Zheng, H.-G., Tan, W.-L., Michael, K. L., Wei, J., Long, D.-l., Wong, W.-T., Yu, K.-B. & Xin, X.-Q. (1999). *Polyhedron*, **18**, 3115–3121.